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Abstract— In this study we present a novel method of land 

surface classification using surface-reflected GPS signals 

in combination with digital imagery.  Two GPS-derived 

classification features are merged with visible image data 

to create terrain-moisture (TM) classes, defined here as 

visibly identifiable terrain or landcover classes containing 

a surface/soil moisture component.  As compared to using 

surface imagery alone, classification accuracy is 

significantly improved for a number of visible classes when 

adding the GPS-based signal features. Since the strength of 

the reflected GPS signal is proportional to the amount of 

moisture in the surface, use of these GPS features provides 

information about the surface that is not obtainable using 

visible wavelengths alone. Application areas include 

hydrology, precision agriculture, and wetlands mapping. 

 

I.  INTRODUCTION 

SE of the Global Positioning System (GPS) satellite L-

band (1.57542 GHz) coarse acquisition (C/A) signal for 

ocean windspeed measurement and land-surface remote 

sensing has been under development since the mid-1990‟s. 

[1][2][3]. In this study we present a novel use of the GPS 

surface-reflected signal for terrain/land cover classification 

based on both the visible attributes and the moisture content of 

the surface.   

 GPS remote sensing generally involves use of the direct 

satellite signal to obtain both instrument (receiver) position 

and signal strength information while simultaneously 

measuring the strength of the surface-reflected signal (Fig. 1).  

To compute the surface coordinates of the area being sensed, 

the signal specular (mirror-reflection) point, S, is determined 

from the known aircraft position, satellite position and 

elevation angle (γ), along with surface topographical data 

(digital elevation models). Surface remote sensing occurs 

along the specular point ground track, Ps, created as the 

aircraft flies at altitude, h, above the surface.  Given generally 

specular reflection (vs. diffuse scattering) of the GPS signal 

from the terrain, the ground track is approximately one 

Fresnel zone [4] in width (point P). 

 During data acquisition, the NASA-Langley GPS remote 

sensing (GPSRS) instrument used in this study simultaneously 

correlates (compares) the unique satellite pseudo-random 

noise (PRN) code in a given satellite signal with an 

instrument-generated copy of the code. For each surface 

measurement, the reflected signal is correlated at 14 

successive delay times (or delay bins) relative to the arrival of 

the signal from the specular point. The correlation results are 

squared as part of instrument signal processing and recorded 

for later analysis. During post-processing, an ideal, squared- 

correlation function (λ
2
 waveform) is fitted to each set of delay 

bin values, as shown in Fig. 2. The estimated peak, KR, is 

proportional to surface-reflected power. Similar processing of 

the direct signal produces instrument output, KD, proportional 

to direct signal power. 

 Surface reflectivity, R, is the ratio of reflected power to 

direct power [5], and is computed using GPSRS measurements 

by: 
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where n  is average instrument noise and fc is a calibration 

scale factor.  Constant fc is calculated using over-water values 

of KR and KD and the known reflectivity of water (R ~ 0.61) 

[5].  It has been well established that microwave energy in the 

wavelength range of the GPS C/A signal is reflected from a 

land surface (e.g. a field) to a greater extent as the moisture 

content increases [6][7]. We therefore utilize reflectivity, R, as 

one of two GPS-based classification features.   

 Additionally, it is known that certain types of terrain 

(including the vegetation) scatter radio frequency (RF) signals 

more than others [4][5].  In the GPSRS, this increased 

scattering results in a “widening” of the [sampled] correlation 

waveform as compared to the ideal λ
2 

waveform. In this study 

we introduce a measure of this widening effect called the 

signal dispersion, D, defined as:  
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with linearly increasing weights, wi:    

     }1,...,1,0{  Bwi ,     (2a) 

where Lj is the normalized, squared-correlation sample at the 

j
th

 delay bin, j = {1,2,…,14}. A given measurement will have 

B correlator outputs (B ≤ 14) that are above the noise 

threshold. On average, a rougher surface will have a larger 

dispersion value than a relatively smooth one. This allows use 

of dispersion, D, as a second GPS-based surface classification 

feature.   

 The reflectivity and dispersion measures are used to 

discriminate terrain (or ground cover) types which have 

generally different surface/soil moisture (SM) levels. Using 

GPS-derived classification features along with aerial imagery, 

various terrain classes can be differentiated based on both 

visible characteristics and moisture content. This leads to the 

notion of a terrain-moisture (TM) class; one with a visible 

terrain/landcover type combined with a moisture component.  

An example TM class is: „pasture - 11% soil moisture‟.  More 

generally, the moisture component may be given in terms of 

the amount of precipitation received, e.g. „desert scrubland – 5 

mm precipitation.‟  

 We note that unsupervised terrain classification (i.e. data 

clustering followed by labeling) using GPS surface reflectivity 

in combination with black and white imagery was introduced 

in our earlier work [8].  Here we perform supervised, 

(maximum-likelihood) classification with data vectors 

U 



comprised of three visible bands (red, green, blue) and two 

GPS classification features. To our knowledge, this is the first 

effort to develop GPS signal-derived classification features 

that, together with visible imagery, allow land surface types to 

be distinguished using both visible characteristics and relative 

moisture content. 

 

II.  STUDY REGION AND METHODS 

We acquired GPS data and surface imagery in an area near 

Tifton, Georgia during the joint NASA-Department of 

Agriculture Soil Moisture Experiments 2003 (SMEX03) 

study. The GPSRS instrument was flown aboard a Cessna 

aircraft equipped with a down-looking, digital camera to 

obtain contemporaneous imagery.  With the research aircraft 

in this configuration, both high-resolution imagery and GPS 

data over the region of interest could be obtained in relatively 

close time proximity (or simultaneously if desired), to avoid 

the longer time differences (several days or weeks) that often 

result when utilizing available, cloud-free satellite imagery 

with data from aircraft-based sensors. At intervals during the 

June/July study period, surface moisture measurements at a 

number of field sites were obtained by hydrology researchers. 

 We focus on four sites, designated GA23, GA27, GA34, 

and GA36, within the Tifton study area. Aerial imagery of 

these sites was acquired on 6/28/03. GPS remote sensing data 

from these sites were acquired a few hours after a rain event 

on 6/30/03.  Sites GA23 and GA34, in the northern part of the 

study area received between 6 mm and 13 mm of 

precipitation, respectively, on the morning of 6/30/03. The 

more southerly sites, GA27 and GA36, received no rain during 

the week prior to data acquisition. Fig. 3 gives average surface 

reflectivity (eqn. 1) for each site along with measured soil 

moisture at the 0 – 3 cm and 3 – 5 cm depths. 

  The high-resolution (~ 0.25 m) images obtained for each 

site were geolocated (registered) to 1 m resolution black & 

white orthoquad imagery of the area and then re-sampled to 1 

m resolution to aid in processing. As part of the signal 

calibration process, small misalignments in the GPSRS data 

specular point position on the surface due to DEM and aircraft 

position uncertainty were corrected by aligning the data to 

visible surface features. Manual segmentation and data 

labeling of site images using visibly identifiable classes was 

performed to obtain classifier training data and to allow 

classification accuracy to be assessed.  For ground truth data 

labeling, the visible classes identified (e.g. „bare field,‟ 

„pasture,‟ „forest,‟ etc.) at a particular site were assumed to be 

at a uniform soil moisture (SM) level. Sites images and 

associated truth segmentation maps of GA23 (Fig. 4 top row) 

and GA34 (bottom row) are representative. Each site has 

between 5 and 10 visible classes which, with 4 distinct SM 

levels, results in 32 separate TM classes among all four sites.  

Examples include: „Pasture – 2.2 to 4.7%‟ (P2), „Bare Field – 

8.7 to 10.1%‟ (BF8), and „Mixed Forest/Pasture – 11.5 to 

12.2%‟ (MFP11). 

 The measured reflectivity and dispersion values covering 

all the sites were scaled to the digital image data range of 0 – 

255 prior to classification. Various scene classifications were 

performed using either the [digital image] visible bands (V) 

alone, or visible bands plus reflectivity (VR), or visible bands 

plus reflectivity and dispersion (VRD). Sites were classified 

both individually, to categorize visible classes at the same SM 

level, and in pairs, to determine how well common visible 

classes at two different SM levels could be distinguished. 

Occasional cloud cover resulted in varied illumination of the 

same visible classes (e.g. „bare field‟, „forest‟) at different 

sites.  To reduce the effect of differing light levels when 

classifying a pair of sites, image data samples from the 

landcover classes common to both sites were used for 

classifier training data.  The accuracy of classification for a 

given class is defined here as the percent of correctly 

classified pixels as compared to the segmentation map. 

Overall classification accuracy is the average over a set of 

classes. 

   

III.  RESULTS 

Results are given here in summary form. With the exception 

of the „Mixed Forest/Pasture,‟ (MFP) class, for the individual 

sites (at a uniform SM level) classification was improved by 

the addition of GPS features; particularly for classes which 

could not be discriminated well using only image data. The 

MFP classification accuracy was relatively low when using 

only image data (~ 16%) and/or tended to degrade slightly 

with the addition of the GPS features. From Table I, with MFP 

removed the average classification accuracy of GA23 (i.e. for 

all classes in the site) was the most improved when combining 

GPS with image data as compared to using imagery alone, 

whereas GA34 showed the least overall improvement. The 

effectiveness of the added GPS features tended to increase 

when classifying more complex scenes with larger numbers of 

visible classes. GA34 contains 5 visible classes, GA36 and 

GA27 each have 7, and GA23 has 10 such classes. 

Comparing sites with common visible classes but with 

different SM levels illustrates the concept of partitioning a 

scene into terrain-moisture classes. By definition, physically 

distinct regions in the same visible class (e.g. „Emergent 

Field‟) cannot be distinguished based on [invisible] sub-

surface moisture level using image data alone, regardless of 

any incidental differences such as illumination level or 

vegetation coverage.  We thus compare the performance of 

adding one (VR) or both (VRD) GPS features to the visible 

wavelength data. A typical result is shown in Fig. 5 where 

GA23 and GA34 are classified jointly, for the visible class 

regions which are common to both sites. Clearly, some classes 

were more accurately classified than others.  Addition of the 

dispersion feature (VRD) increased the classification accuracy 

by an average 9.4% over the visible plus reflectivity case 

(VR). Without the difficult to resolve „MFP‟ class, on average 

the dispersion feature improved the classification accuracy by 

10.7%. 

 

 

IV.  CONCLUSIONS 

We have demonstrated that the terrain/land-cover 

classification accuracy of visibly identifiable classes at a 

single moisture level can be improved by utilizing GPS-

derived classification features in combination with visible 

wavelength imagery.  Significantly increased classification 

accuracy of individual sites due to added GPS features was 



not, apparently, a function of soil moisture level or of the 

amount of precipitation preceding data acquisition.  

Additionally, it was demonstrated that for sites with generally 

different moisture levels but having common visible classes, 

remotely sensed areas can be partitioned into terrain-moisture 

(TM) classes. This capability was observed even for sites such 

as GA23 and GA27, which had relatively little difference in 

soil moisture level (~ 2%). Further analysis is needed to 

determine why some classes were more accurately classified 

than others. 

When classifying areas with uniform moisture level, use 

of the GPS-derived surface reflectivity and dispersion features 

can significantly improve overall site classification accuracy 

as compared to using digital image data alone. When 

classifying areas with different SM levels, apart from the 

ground-penetrating nature of the ~19 cm wavelength GPS 

signal, no differentiation of regions based on soil moisture 

level can be achieved, given only shorter wavelength visible 

(or even mid- infrared) data. We note that increased 

classification accuracy is likely to be greater than reported 

here when combining these GPS features with traditional 

grayscale orthoquad imagery, where surface water bodies are 

often indistinguishable from regions of forest or pasture.  

Although we have used visible wavelength imagery in 

this study, our method is generally extensible to data sets with 

thermal bands (e.g. Landsat) or to panchromatic imagery. In 

general, the choice of classes may be tailored to the particular 

application, be it precision agriculture or hydrological studies, 

among others. 
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Fig. 1.  Basic GPS remote sensing geometry showing 

simultaneous measurement of direct and surface- 

reflected satellite signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

 

Fig. 2.  Set of delay bin correlator measurements 

for a typical surface-reflected signal with estimated 

correlation peak, KR, near delay bin 6. 

 

 

      

 

 

 

                                        

Figure 3 
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      Fig. 3.  Mean reflectivity of each field site.  Percent soil  

      moisture is given for 3 cm and 5 cm (in parentheses) soil  

      depths. 

       

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Rectified images (left) showing specular point  

ground truth tracks for sites GA23 (a) and GA34 

(b) and associated segmentation maps (right). 
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         TABLE I.  % CLASSIFICATION ACCURACY 

 

 

 

 

 

 

 

 

 

 
       Classification cases are visible bands (V), visible 

       plus GPS reflectivity (VR), and visible plus GPS 

       reflectivity and dispersion (VRD). „Improvement 

       with GPS‟ is the difference between case „VRD‟ 

       and case „V.‟ 

 

 

 

 

       
 

Fig. 5  Classification of sites GA23 (SM ~ 8%) and GA34  

(SM ~ 11%) with common visible classes: „Bare Field‟  

(BF), „Emergent Field‟ (EF), „Grass Field‟ (GF), „Forest‟  

(F) and „Mixed Forest/Pasture‟ (MPF), „Water‟ (W), and  

„Roads‟ (R). Classification cases are visible bands plus  

reflectivity (VR) and visible plus reflectivity and  

dispersion (VRD). 

  

 

 

V 

Site 

No. 

87.4 34 

36 

23 

VR VRD 

27 

Improvement 

with GPS 

90.1 88.1 0.7 

55.0 59.1 60.6 5.6 

64.9 76.8 82.2 17.3 

49.7 61.5 70.5 20.8 


